
The Deserialization Problem

The problem that occurs when applications deserialize data from
untrusted sources is one of the most widespread security vulnerabilities
to occur over the last couple years.

This article will provide background on the deserialization vulnerability,
describe the limitations of the existing mitigation techniques and
explain why Waratek’s Compiler Based solution is ideal in solving this
problem.

A brief background
Serialization is the process of converting a memory object into a stream
of bytes in order to store it into the filesystem or transfer it to another
remote application. Deserialization is the reverse process that converts
the serialized stream of bytes back to an object in the memory of the
machine. All main programming languages provide facilities to perform
native serialization and deserialization and most of them are vulnerable.

Recent research by Gabriel Lawrence, Chris Frohoff and Steve Breen
demonstrated working deserialization attacks on popular Java
applications and frameworks that allow Remote Command Execution.
To demonstrate their findings they have created the ysoserial tool, a
proof-of-concept tool for generating payloads that exploit unsafe Java
object deserialization. The main driver for their research was the finding
of a dangerous class in the Apache Commons Collection library. The
name of that class is InvokerTransformer. This finding gained a lot of
attraction mainly because of the popularity of the Apache Commons
Collection (ACC) library. Even CERT issued a Vulnerability Note for the
vulnerability in the ACC library. Any application, server or framework
that depended on the Apache Commons Collection was potentially
vulnerable. JBoss, WebLogic, IBM WebSphere and Jenkins were only
just a few of the affected systems.

Explaining all the internal details of the deserialization exploit goes
beyond the scope of this article and there are many other articles
that do that very well. However, a few important things need to be
explained.

The Deserialization Problem
What is the Deserialization vulnerability and what are the challenges
in providing a solution

WHITE PAPER

What is the functionality of the InvokerTransformer and why
does it allow an attacker to exploit the system?

The InvokerTransformer’s goal is to transform objects in a
collection by invoking a method using reflection. Attackers
abuse this functionality and manage to invoke any method
they want. The deserialization PoC exploit tool ysoserial
abuses InvokerTransformer and instead of transforming a
collection object, it invokes the Runtime.exec() that executes
arbitrary commands on the target system.

In order to abuse the InvokerTransformer and make it invoke
arbitrary dangerous methods, such as the Runtime.exec(), a
specially crafted method sequence needs to be created by the
attacker. Each method in the sequence is called a “gadget”
and the malicious sequence of method calls is called a “gadget
chain”. In the case of the Apache Commons Collections,
the InvokerTransformer is a gadget in the malicious gadget
chain. Note that every time a new gadget chain is identified,
the ysoserial tool gets expanded to include it in its available
payloads.

However, note that there are some gadgets that contain no
third-party gadgets! These gadget chains contain only JRE
gadgets. Nothing more than just a vulnerable version of the
JVM is required for such chains to exploit the system. Such
gadget chains are often called golden gadget chains and they
are powerful.

How the attack works can be summarized in the following
steps:

1. A vulnerable application accepts user-supplied serialized
objects.

2. An attacker creates a malicious gadget chain, serializes it
into a stream of bytes and sends it to the application.

3. The vulnerable application reads the received stream of
bytes and tries to construct the object. This operation is
called “deserialization.”

4. During deserialization, the gadget chain is executed and the
system gets compromised.

https://cwe.mitre.org/data/definitions/502.html
https://cwe.mitre.org/data/definitions/502.html
http://https://github.com/frohoff/ysoserial
https://commons.apache.org/proper/commons-collections/javadocs/api-3.2.2/org/apache/commons/collections/functors/InvokerTransformer.html
https://www.kb.cert.org/vuls/id/576313
http://gursevkalra.blogspot.ie/2016/01/ysoserial-commonscollections1-exploit.html
https://docs.oracle.com/javase/8/docs/api/java/lang/Runtime.html#exec-java.lang.String-
https://frohoff.github.io/appseccali-marshalling-pickles/
https://frohoff.github.io/appseccali-marshalling-pickles/
https://github.com/frohoff/ysoserial/blob/master/src/main/java/ysoserial/payloads/Jdk7u21.java
http://www.slideshare.net/cschneider4711/surviving-the-java-deserialization-apocalypse-owasp-appseceu-2016
http://www.slideshare.net/cschneider4711/surviving-the-java-deserialization-apocalypse-owasp-appseceu-2016
http://image.slidesharecdn.com/201606owaspappseceusurvivingthejavadeserializationapocalypse-160721174531/95/surviving-the-java-deserialization-apocalypse-owasp-appseceu-2016-33-638.jpg?cb=1469551505

waratek.com

Waratek
Dublin Office
8 Harcourt Street
Dublin, Ireland

US Office
117 Towne Lake Pkwy, Ste 210
Woodstock, GA 30188

WHITE PAPER

What is the impact of such a system compromise?

Depending on the payload, a gadget chain can perform Remote
Code Injection, Remote Command Execution, Denial of Service,
etc. It really depends on the creativity of the attacker. In other
words, deserialization vulnerabilities are considered to be critical
vulnerabilities with a CVSS score from 7.5 up to 10, depending
the environment.

Where exactly is the vulnerability in this scenario
and What is it that makes the above scenario
vulnerable to attacks?

Only two criteria are required in order for a deserialization vul-
nerability to be introduced to an application:

1. The application must accept and deserialize serialized data
from a location where an attacker has access to.

2. Vulnerable classes must exist in the classpath of the applica-
tion.

This means that it is not enough for an application to use a
“vulnerable” version of the Apache Commons Collection in
order to be vulnerable. It must also deserialize data from unsafe
locations.

And this is exactly why the Apache foundation claims that the
InvokerTransformer and other such classes that implement a
certain functionality cannot be blamed for this vulnerability.
It is the combination of both these criteria that introduces the
vulnerability. The InvokerTransformer by itself is not vulnerable.

hoW did apache react to the finding of this vulner-
ability?

From the Apache side, even though they stated that the
InvokerTransformer cannot be blamed for this vulnerability, they
hardened the InvokerTransformer by removing its ability to be
serialized.

However, this means that such a change breaks backwards
compatibility and any application that was depended on
serializing the InvokerTransformer would break.

To overcome this limitation the Apache community decided
to introduce a system property that will restore the previous,
potentially unsafe behavior of the InvokerTransformer.
Therefore, with Apache’s fix, a system cannot both use the
InvokerTransformer for deserialization and be protected at

the same time. It must be either one or the other, based on a system
property.

What needs to be understood here is that by not allowing the
InvokerTransformer to be serialized, then attackers will not be able to
use the InvokerTransformer anymore to craft malicious gadget chains.

Does this really solve the problem at its core?
No. it merely patches the problem.

There is a Greek expression that says that if you have a headache,
cutting off your head will not solve your problem. This is exactly
what happened here with the InvokerTransformer. Disabling its
serializability is not the proper way to solve the problem; it might break
your application and does not automatically make the system safe.

The InvokerTransformer is not the only known gadget. Several other
have been identified and many more will be found in the future.
Disabling a class every time it is found that it can be used as a gadget
will only create a never-ending Whack-a-Mole game.

The ysoserial exploit kit is a good example that demonstrates this
conumdrum. Currently it contains 27 gadget chains that utilize several
distinct gadgets. Disabling the InvokerTransformer does not solve the
problem since there are more than 21 other gadget chains that do not
use the InvokerTransformer and could potentially compromise your
system.

To make things even worse, golden chains, that contain only JRE
gadgets, cannot be blindly disabled or removed because most
probably the application will break because of the missing required
functionality.

Additionally, the transitive dependencies of third-party components
create a library sprawl which makes the problem of identifying and
disabling “dangerous” classes even more complicated.

https://blogs.apache.org/foundation/entry/apache_commons_statement_to_widespread
https://twitter.com/gebl/status/662754611304996866
https://github.com/frohoff/ysoserial/tree/master/src/main/java/ysoserial/payloads

waratek.com

Waratek
Dublin Office
8 Harcourt Street
Dublin, Ireland

US Office
117 Towne Lake Pkwy, Ste 210
Woodstock, GA 30188

WHITE PAPER

Variations of Deserialization attacks
At this point it is important to introduce three variations of the
deserialization attacks in order to better understand the impact of these
attacks. There are:

1. Blind deserialization attacks that aim to extract data from the target
system in environments where the system is behind a network
firewall that blocks outgoing connections or when strict Security
Manager policies are in place.

2. Asynchronous (or stored) deserialization attacks that store the gad-
get chains in a database or a message queue. The gadget chains will
be executed when the target system reads data from the database or
the message queue and deserializes them.

3. Deferred-execution deserialization attacks that do not execute the
gadget chains during deserialization but after deserialization has
completed. This is usually achieved via the finalize() method. Here is
an example of this attack.

The situation gets even worse because all the known DoS deserializa-
tion attacks were classified as “won’t fix” by Oracle [1] [2] or a few other
vendors such as Red Hat.

Having a production infrastructure with vulnerable software whose
vendors refuse to provide a fix is the worst situation any enterprise
wants!

What is the proper fix?
Is there a solution that solves the problem and stops all the various
types of deserialization attacks?

According to CERT “Developers need to re-architect their applications”.
Obviously, such a fix requires significant code changes, time, effort and
money to achieve this. If changing the source code and the architecture
of the application is an option then this is the preferred approach.

However, bear in mind that even if an application does not perform
any deserialization in its own components, most servers, frameworks
and third-party components do. So, it is extremely difficult to be
100% certain that the whole stack does not and will never perform
deserialization without breaking existing required functionality.

Especially for enterprise production environments with hundreds
of deployed instances making any source code changes is almost
not feasible to implement. Typically, for enterprise production

environments, any solution that requires code changes and more
than a few minutes of deployment time is not acceptable, especially
for critical vulnerabilities such as the deserialization vulnerability.
Enterprise solutions need protection fast and without requiring
source code changes.

CERT alternatively suggests that blocking the network port using a
firewall might solve the problem in some cases. However, in most
cases this is not applicable. For example, the deserialization exploits
in JBoss, WebLogic, WebSphere, etc run on the HTTP port of the
web server. Which means that blocking that port will render the
server useless. Therefore, blocking the network port is not a viable
option.

How did the vendors of the affected systems solve the issue?

Without going into much detail of every affected software, the
following list shows how some other vendors handled the issue:

Spring Hardened the dangerous classes

Oracle WebLogic Blacklist

Apache ActiveMQ Whitelist

Apache BatchEE Blacklist + Whitelist

Apache JCS Blacklist + Whitelist

Apache OpenJPA Blacklist + Whitelist

Apache OWB Blacklist + Whitelist

Apache TomEE Blacklist + Whitelist

Atlassian Bamboo Disabled deserialization

Jenkins Disabled deserialization + upgraded ACC

IBM WebSphere Upgraded ACC

Also note that there were cases where the vendors refused to create
a fix for the issue either because they do not acknowledge the
problem as their own or the affected system is an old version that is
no longer supported.

https://github.com/topolik/ois-dos
https://twitter.com/woutercoekaerts/status/663774695381078016
http://seclists.org/fulldisclosure/2016/Nov/143
https://www.kb.cert.org/vuls/id/576313
http://zerothoughts.tumblr.com/post/137831000514/spring-framework-deserialization-rce
http://seclists.org/fulldisclosure/2016/Nov/143

waratek.com

Waratek
Dublin Office
8 Harcourt Street
Dublin, Ireland

US Office
117 Towne Lake Pkwy, Ste 210
Woodstock, GA 30188

WHITE PAPER

If the vendors cannot provide patches and the customers
cannot make any source code changes, then how can such
production systems be protected?

First, there are the Web Application Firewalls. WAFs are
not helpful here because they have no application context
since they can only examine the input and the output of the
application. Applying heuristics on the incoming requests is
guaranteed to produce false positives and false negatives.

Any security solution that has no application context and
operates outside of the application cannot adequately solve
the deserialization vulnerability.

Second, there are some RASP vendors and some Java agents
that either disable deserialization completely or apply
blacklisting / whitelisting on the classes that are getting
deserialized.

Some of these solutions break the Oracle Binary Code
License Agreement and therefore are illegally deployed in
production. Even if that was legal, by completely disabling
deserialization system-wide, this is guaranteed to break all
except the most trivial Java applications. So, this is out of the
question for enterprise environments.

Now let’s examine here why blacklisting and whitelisting are
bad solutions to the problem.

Any security solution that depends on blacklisting of
dangerous classes requires profiling of the application in
order to verify that these classes are not utilized by the
application. Without first profiling the application, it is not
possible to blacklist a class because the risk of breaking the
functionality of the application is significant.

Additionally, adopting a negative security model means that
you will never be sure that you have blacklisted everything.
The list of blocked signatures has to be maintained constantly
and frequently and by definition it does not protect any
unpublished, zero-day exploits.

Any security solution that promotes a blacklisting strategy as a solution
to deserialization attacks is doomed to fail since it plays the Whack-a-
Mole game.

Whitelisting is a much better approach than blacklisting. However, to
apply whitelisting, profiling of the application is again required. In this
case, the white list will be a really big list of classes.

Such big lists are very difficult to manage, especially for enterprise
environments. In addition, every time the application needs to upgrade
to a newer release, the profiling needs to be performed again and a new
white list needs to be created. Therefore, this considerably complicates
the deployment of new releases in production.

This usually leads to white lists that are not updated and in turn
produces false positives. Finally, even if an enterprise decides to
accept the effort to constantly profile their infrastructure and maintain
whitelists, they are still vulnerable to golden gadget chains and to
Denial of Service deserialization attacks.

Another suggested mitigation is to blindly block (or whitelist) process
forking and file/network IO.

Even though this approach will reduce the impact of a deserialization
attack, it does not protect against blind attacks for data exfiltration nor
Denial of Service deserialization attacks.

Finally, some researchers suggest that using an ad-hoc Security
Manager can help mitigate these attacks. However, the truth is that
even though it is a good first mitigation step, it is insufficient because of
its many limitations.

1. Security Managers are known to be easily bypassed.

2. Security Managers do not protect deferred attacks where the execu-
tion of the payload is executed after deserialization, for example via
the finalize() method.

3. Security Managers will not mitigate any DoS deserialization attacks.

4. Security Managers require another type of white list to be created
and maintained.

How can customers with old or legacy versions of affected systems be protected against the
deserialization attacks?

https://github.com/wsargent/paranoid-java-serialization
http://camel.apache.org/security-advisories.data/CVE-2015-5344.txt.asc
https://deadcode.me/blog/2016/09/02/Blind-Java-Deserialization-Commons-Gadgets.html
https://gist.github.com/coekie/a27cc406fc9f3dc7a70d
https://docs.oracle.com/javase/tutorial/essential/environment/security.html
https://docs.oracle.com/javase/tutorial/essential/environment/security.html

waratek.com

Waratek
Dublin Office
8 Harcourt Street
Dublin, Ireland

US Office
117 Towne Lake Pkwy, Ste 210
Woodstock, GA 30188

WHITE PAPER

A new solution: Compiler based Deserialization Rule
Based on the above discussion, it’s clear that there is a need for a better security solution to address this critical vulnerability. Here is a list of
requirements for what could be described as the ideal security solution for deserialization attacks:

1. Must work with zero source code changes

2. Must work with no application profiling

3. Must work with no configuration or tuning (no blacklists or whitelists)

4. Must allow applications to be updated / upgraded without redeployment effort

5. Must work with existing hardware and application stack

6. Must allow applications to use the “dangerous” classes / gadgets, as long as they are used for legitimate functionality

7. Must not break existing application functionality or binary compatibility

8. Must not produce any false positives or false negatives

9. Must protect against all known gadget chains (all ysoserial payloads)

10. Must protect even against unpublished, zero-day gadget chains with no configuration

11. Must protect against golden gadget chains

12. Must protect against gadget chains that have been classified as “won’t fix” by the vendors

13. Must protect against blind deserialization attacks

14. Must protect against Denial of Service deserialization attacks

15. Must protect both the Serializable and the Externalizable interfaces

16. Must protect attacks via any end-point (such as HTTP, RMI, JMS, JNDI, etc)

17. Must protect the full application stack (the JRE, the server, the framework, the application and all the dependent libraries)

18. Must protect against deferred deserialization attacks (such as via the finalize())

19. Must protect against lateral / stored deserialization attacks (such as via databases)

20. Must not depend exclusively on the Security Manager

21. Must support all versions and releases of Java

Lastly, it’s important to note that all the above must be achieved without incurring any noticeable performance overhead. In other words, it must
be production-ready.

The above list of requirements can be very helpful to anyone who
might want to evaluate the effectiveness and the usability of a
deserialization mitigation solution.

Waratek offers a new security feature that remediates Java object
deserialization attacks and fulfills all the above requirements.

Using Waratek RASP and by turning on the “Deserial” rule, the
full application stack is automatically protected against Java
deserialization attacks both known or unknown (zero-day).

This is achieved by creating a dynamic, restricted compartment,
inside Waratek. This restricted compartment is active for the
duration of each deserialization operations as well as after the
deserialization has completed on specific events such as during
garbage collection. The restricted compartment allows any
legitimate functionality to run normally but prohibits any gadget

chain to abuse and compromise the system. The feature even allows
the InvokerTransformer to be used normally by systems that depend
on this functionality, without risking the system to be compromised by
any malicious gadget chains.

All the above is achieved without having to make any code changes,
any profiling, any black or white listing with no false positives or
negatives and without breaking existing functionality.

The feature also remediates golden gadget chains (JRE-only gadgets),
blind attacks, Denial of Service, asynchronous / lateral attacks, as well
as attacks with deferred-execution.

The protection is achieved with minimum performance overhead and
can be deployed on any Java release.

author: apostolos giannakidis, security architect

